25 research outputs found

    Bacterial pathogenesis of plants: Future challenges from a microbial perspective

    Get PDF
    Plant infection is a complicated process. Upon encountering a plant, pathogenic microorganisms must first adapt to life on the epiphytic surface, and survive long enough to initiate an infection. Responsiveness to the environment is critical throughout infection, with intracellular and community-level signal transduction pathways integrating environmental signals and triggering appropriate responses in the bacterial population. Ultimately, phytopathogens must migrate from the epiphytic surface into the plant tissue using motility and chemotaxis pathways. This migration is coupled to overcoming the physical and chemical barriers to entry into the plant apoplast. Once inside the plant, bacteria use an array of secretion systems to release phytotoxins and protein effectors that fulfil diverse pathogenic functions (Fig. 1)(Phan Tran et al., 2011, Melotto & Kunkel, 2013)

    Interaction and Signalling Networks:a report from the fourth 'Young Microbiologists Symposium on Microbe Signalling, Organisation and Pathogenesis'

    Get PDF
    At the end of June, over 120 microbiologists from 18 countries gathered in Dundee, Scotland for the fourth edition of the Young Microbiologists Symposium on ‘Microbe Signalling, Organisation and Pathogenesis’. The aim of the symposium was to give early career microbiologists the opportunity to present their work in a convivial environment and to interact with senior world-renowned scientists in exciting fields of microbiology research. The meeting was supported by the Microbiology Society, the Society of Applied Microbiology and the American Society for Microbiology with further sponsorship from the European Molecular Biology Organisation and the Royal Society of Edinburgh. In this report, we highlight some themes that emerged from the many interesting talks and poster presentations, as well as some of the other activities that were on offer at this energetic meeting

    Communication, co-operation and social interactions:a report from the third 'Young Microbiologists Symposium on Microbe Signaling, Organization and Pathogenesis'

    Get PDF
    The third Young Microbiologists Symposium took place on the vibrant campus of the University of Dundee, Scotland, from the 2nd to 3rd of June 2014. The symposium attracted over 150 microbiologists from 17 different countries. The significant characteristic of this meeting was that it was specifically aimed at providing a forum for junior scientists to present their work. The meeting was supported by the Society for General Microbiology and the American Society for Microbiology, with further sponsorship from the European Molecular Biology Organization, the Federation of European Microbiological Societies, and The Royal Society of Edinburgh. In this report, we highlight some themes that emerged from the many exciting talks and poster presentations given by the young and talented microbiologists in the area of microbial gene expression, regulation, biogenesis, pathogenicity, and host interaction.</p

    Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre

    Get PDF
    Bis-(3′,5′) cyclic di-guanylate (c-di-GMP) is a key bacterial second messenger that is implicated in the regulation of many crucial processes that include biofilm formation, motility and virulence. Cellular levels of c-di-GMP are controlled through synthesis by GGDEF domain diguanylate cyclases and degradation by two classes of phosphodiesterase with EAL or HD-GYP domains. Here, we have determined the structure of an enzymatically active HD-GYP domain protein from Persephonella marina (PmGH) alone, in complex with substrate (c-di-GMP) and final reaction product (GMP). The structures reveal a novel trinuclear iron binding site, which is implicated in catalysis and identify residues involved in recognition of c-di-GMP. This structure completes the picture of all domains involved in c-di-GMP metabolism and reveals that the HD-GYP family splits into two distinct subgroups containing bi- and trinuclear metal centres.</p

    The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    Get PDF
    Background: Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results: Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions: We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion

    Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence

    Get PDF
    Bis-(3 ',5 ') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K-d similar to 2 mu M). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence

    Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist's perspective

    No full text
    Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals. A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products. Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host. Here we review recent developments in novel preventive treatments against C. perfringens-induced necrotic enteritis in broiler chickens that employ yeasts, bacteria and bacteriophages or secondary metabolites and other microbial products in disease control

    An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen <em>pseudomonas aeruginosa</em>

    Get PDF
    The synthesis of virulence factors by pathogenic bacteria is highly regulated and occurs in response to diverse environmental cues. An array of two component systems (TCSs) serves to link perception of different cues to specific changes in gene expression and/or bacterial behaviour. Those TCSs that regulate functions associated with virulence represent attractive targets for interference in anti-infective strategies for disease control. We have previously identified PA2572 as a putative response regulator required for full virulence of Pseudomonas aeruginosa, the opportunistic human pathogen, to Galleria mellonella (Wax moth) larvae. Here we have investigated the involvement of candidate sensors for signal transduction involving PA2572. Mutation of PA2573, encoding a probable methyl-accepting chemotaxis protein, gave rise to alterations in motility, virulence, and antibiotic resistance, functions which are also controlled by PA2572. Comparative transcriptome profiling of mutants revealed that PA2572 and PA2573 regulate expression of a common set of 49 genes that are involved in a range of biological functions including virulence and antibiotic resistance. Bacterial two-hybrid analysis indicated a REC-dependent interaction between PA2572 and PA2573 proteins. Finally expression of PA2572 in the PA2573 mutant background restored virulence to G. mellonella towards wild-type levels. The findings indicate a role for the orphan chemotaxis sensor PA2573 in the regulation of virulence and antibiotic tolerance in P. aeruginosa and indicate that these effects are exerted in part through signal transduction involving PA2572

    Domain organizations of PA2571, PA2572 and PA2573.

    No full text
    <p>Domains were predicted by SMART with amino acid positions indicated. Domain abbreviations are as follows; HisKA (Histidine Kinase A phosphoacceptor domain), HATPase_c (Histidine kinase-like ATPase), REC (Receiver domain), HD (superfamily with predicted or known phosphohydrolase activity), HAMP (Histidine kinase, Adenylyl cyclase, Methyl binding protein, Phosphatase domain), and MA (Methyl-accepting chemotaxis-like domain). Vertical bars represent predicted transmembrane domains (SOUSI). Black lines below figures represent constructs cloned into either pBT or pTRG vectors to assess potential protein-protein interactions using the bacterial two-hybrid assay.</p
    corecore